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Abstract. This tutorial provides an overview of the PVS strategy language, and explains how to de�ne
new PVS strategies and load them into PVS, and how to create a strategy package. It then discusses
several useful techniques that can be used in developing user strategies, and provides examples that
illustrate many of these techniques.

1 Introduction

Why use strategies in PVS? There are several compelling reasons for doing so. We o�er a few scenarios below
that illustrate productive uses for strategies.

PVS provides a core set of inference rules supplemented by decision procedures and other simpli�cation
heuristics. Continuing enhancements to the theorem prover gradually increase the automation available to
interactive users. Nevertheless, the level of automation perceived by users is still much lower than desired.
This is not a problem peculiar to PVS; similar provers su�er the same limitations. In fact, PVS is among
the most automatic of provers in its class.

Strategies provide an accessible means of increasing the automation available to users of the PVS prover.
This can be done in generic form, suitable for a wide range of proving tasks, or in speci�c problem domains,
yielding specialized tools suitable only in narrow contexts. Development of strategies can be performed by
end users or specialists whose role is to create strategies for use by others. Over time, strategy development
can lead to a reusable body of \deductive middleware." An e�ective division of labor in the overall conduct
of mechanical theorem proving is a possible outcome of this process.

In the following, we provide several examples of strategies that are likely to be bene�cial to PVS users.

{ Modest strategies to streamline prover use. This is the simplest category of strategies, typically involving
rules with just a few lines of de�nition. An example would be introducing rules to invoke frequently
occurring sequences of proof commands. Consider the sequence (LIFT-IF), (SPLIT), and (ASSERT).
One could introduce a strategy named IF-SPLIT to carry out this sequence. Such strategies are easy to
create, although their bene�t is limited to saving the e�ort of repetitive typing.

{ Extended forms of prede�ned rules. A slightly more advanced approach is to identify commonly needed
inferences that are guided by user input. By writing strategies that accept arguments, it is possible
to create enhanced versions or combinations of rules that already exist in the prede�ned set provided
by PVS. In fact, many of the higher level prede�ned rules were created using the strategy mechanism.
Consider, for example, a rule to claim that the lefthand sides of two formulae are equal, then invoke the
appropriate CASE command. We might apply such a strategy using (CLAIM-EQ -1 -3) where CLAIM-EQ
is the new proof rule and -1 and -3 are the numbers of the sequent formulae to be considered.

{ Algebraic manipulation and arithmetic simpli�cation. The PVS decision procedures handle linear arith-
metic well, but have more di�culty with nonlinear expressions. In such cases, users must apply lemmas
from the prelude or other sources. Strategies can be e�ective at manipulating arithmetic expressions
when guided by user input. The package Manip [5], for instance, provides strategies for conducting user-
directed manipulations of real-valued expressions. Similarly, the package Field [6] carries out higher level
arithmetic reduction with considerable automation.

? Funded under NASA Cooperative Agreement NCC-1-02043.
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{ Deduction support for specialized models or speci�cations. Veri�cation or analysis tasks based on theorem
proving often take place in the context of a specialized model of computation, such as state machines,
hybrid automata, etc. Proofs in such contexts often have a stylized character that lends itself to automated
proof. By capturing the proof steps and decision processes in the form of strategies, it is possible to provide
a great deal of targeted automation to the proof e�ort. TAME is an example of such an approach within
the domain of timed automata.

{ Interfaces to external proof support tools. Occasionally it is desirable to make use of additional tools that
support the prover in the construction of large or di�cult proofs. Strategies in this role can be used as a
means of accessing the current proof state and exporting information to an external tool. After computing
its result, the external tool can supply information to be acted on in some way, such as submitting prover
commands. An example would be a tool that performs database searches, then returns the names of
suitable lemmas for possible invocation. PVS's musimp, model-check, and abstract-and-model-check

strategies are also examples of this approach.
{ Interfaces to support external components through proving. The support relationship can work in the
other direction as well. Under some arrangements, the prover can be used to provide support to an
external process. For example, a computer algebra system might wish to consult a theorem prover to
con�rm that a transformation it needs to perform is valid under certain conditions. This request could
be posed as a set of conjectures sent to the prover, where a strategy-guided proof process would attempt
to settle the question and return a result.

These suggested uses of PVS are by no means exhaustive. They are realistic, however. Each of these
uses has either been implemented or is currently under development. No doubt other applications will be
discovered. It is our hope that this tutorial might lead others to investigate new possibilities.

The remainder of this tutorial is organized as follows. Section 2 provides the basic information needed
for de�ning your own strategies and making them available in PVS. Section 3 describes and illustrates a
set of techniques that can be used in the development of user strategies. Section 4 provides examples that
demonstrate how to use various techniques to develop both strategies that facilitate user interaction with
PVS and automatic strategies. Finally, Section 5 discusses some additional support that would be useful in
to developers of PVS user strategies.

2 The basics

2.1 PVS commands.

PVS commands can be either rules or strategies. A rule is a command that can be invoked by name and
(if appropriate) applied to arguments. Rules execute as atomic steps in the PVS prover. A strategy is a
command created by using zero or more PVS strategy-building commands to combine rule applications and
other strategies. Thus, every rule application is also a (degenerate) strategy. Executing a strategy in the PVS
prover causes execution of the sequence of atomic steps needed by the strategy for the current subgoal. On
the syntactic level, the heart of a strategy de�nition is a strategy expression built by using strategy-building
command names to combine rule names (applied to arguments, which may involve variable names) and other
strategy expressions.

A representative set of PVS strategy-building commands is listed in Table 1. For short, we will refer to
these commands as strategicals, in analogy to the tacticals in Coq, HOL, and other theorem provers that are
used to combine simpler tactics into more complex ones.

A simple example strategy that is sometimes useful is:

(THEN (LIFT-IF) (PROP) (ASSERT) (FAIL)) (1)

Strategy (1) is useful in determining whether straightforward simpli�cation combined with the PVS decision
procedures will achieve a goal; if it does not, then the intended behavior of this strategy is to return to the
proof subgoal in which it is invoked, without generating any new subgoals. Most simple sequential strategies
do not use (FAIL); because it does so, Strategy (1) can behave badly. In particular, it causes full or partial
proof failure if none of (LIFT-IF), (PROP), and (ASSERT) has an e�ect. One way to ensure the intended
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Strategical Description

(APPLY step) Turns step into a de�ned rule.

(THEN step1 ... stepn) Applies step1 to stepn in order down all branches.

(THEN@ step1 ... stepn) Applies step1 to stepn in order down the main proof branch.

(IF lisp-expr step1 step2)
If lisp-expr evaluates to true then applies step1.
Otherwise, applies step2.

(TRY step1 step2 step3)
Tries step1; if it modi�es the proof state then applies step2.
Otherwise, applies step3.

(ELSE step1 step2) Behaves as (TRY step1 (SKIP) step2).

(SPREAD step (step1 ... stepn)) Applies step and spreads step1 to stepn over the new subgoals.

(BRANCH step (step1 ... stepn)) Like SPREAD but reuses stepn on any extra subgoals.

(REPEAT step) Iterates step until it does nothing down the main proof branch.

(REPEAT* step) Iterates step until it does nothing down all branches.

(WITH-LABELS step (labs1 ... labsn))
Applies step; then labels all new formulae in the new subgoals with
labs1 to labsn.

(LET ((v1 lisp-expr1) ...

(vn lisp-exprn)) step)

Applies a new command that is just like step, but where
vi has been replaced by the evaluation of lisp-expri for 1 � i � n.

Table 1. PVS strategicals

behavior of Strategy (1) is to use the strategy expression in (1) as the body of a de�ned rule, as described
in Section 2.2. Another way is to \wrap" it with the command APPLY, as in:

(APPLY (THEN (LIFT-IF) (PROP) (ASSERT) (FAIL))) (2)

Finally, one may catch the action of FAIL with the command TRY. For more on both TRY and the use of
wrappers, see Section 3.

Note that the two strategicals IF and LET allow the introduction of Lisp code into a strategy. Strategies
that incorporate Lisp code are more sophisticated than Strategies (1) and (2). The Lisp code generally uses
information about the current proof state, though a few useful things can be done by using Lisp code to
set and observe global variables. Strategies that use information about the proof state are discussed later in
Section 3.

2.2 De�ned rules and strategies.

PVS proof rules are of two kinds: primitive rules and de�ned rules. Both primitive and de�ned rules behave
like atomic steps when applied to appropriate arguments, but, unlike a primitive rule, a de�ned rule is derived
from a strategy expression. The strategy expression corresponding to a de�ned rule can be observed in PVS
by typing:

M-x help-pvs-prover-strategy

Also, the documentation string for a strategy can be viewed within the prover via the command HELP.
A de�ned rule is created by applying the PVS macro defstep. Paraphrased from the PVS Prover

Guide [10, 11], the format for defstep is:

(defstep name

parameter-list

strategy-expression (3)

documentation-string

format-string )

The parameter-list, whose precise description can be found in [10, 11], can contain required arguments plus
&optional and &rest parts, rather like the parameter list in a Lisp function de�nition. The documentation-

string is generally used to describe the e�ect of applying the strategy; it is printed interactively as part
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of the documentation of proof steps that is printed by the \help" facilities of PVS, e.g., when one types
(HELP name) during a proof, or M-x help-pvs-prover or M-x help-pvs-prover-strategy followed by
name at any time when using PVS. The format-string is printed interactively when the de�ned rule name

succeeds, i.e., completes the proof of the current goal, or when it returns one or more subgoals. In addition
to creating a new de�ned rule name, the macro defstep also creates a named strategy name$. Variants of
defstep include defhelper, which does not require the documentation-string or format-string arguments,
and defstrat, which does not require the format-string argument. The macro defhelper is intended for
de�ning \internal" auxiliary steps that can be used in other strategies, while defstrat de�nes a strategy
without a corresponding (atomic) de�ned rule.

Strategy (1) can be turned into the de�ned rule PROP PROBE using the de�nition:

(defstep PROP PROBE ()

(THEN (LIFT-IF) (PROP) (ASSERT) (FAIL)) (4)

"Checks for a trivial proof" "By simple reasoning")

Once the de�nition of PROP PROBE has been loaded into PVS, the desired e�ect of Strategy (1) can be
accomplished by just typing (PROP PROBE)when prompted by PVS for a proof rule. Because Strategy (1) does
not refer to any unbound parameter names, the e�ect of (PROP PROBE) is equivalent to that of Strategy (1)
wrapped in (APPLY ...). The exact e�ect of Strategy (1), in which one sees all the steps in the reasoning,
can be duplicated by typing (PROP PROBE$) when prompted for a rule.

By allowing the possibility of parameters, the macro defstep allows a strategy (as well as its correspond-
ing de�ned rule) to be applied in an environment where the parameter names are bound to speci�c values.
The format-string in the de�nition of a rule with parameters can refer to these parameters: any inclusion
of �a in the format string is replaced by the value of an actual parameter, with successive �a's picking up
successive parameters.

A simple example of a new rule with all these features is the rule suppose, whose de�nition is in Figure 1.4

The rule suppose incorporates formula labeling and comments into the simplest version of the PVS command

(defstep suppose (x)
(let ((suppstring (format nil "Suppose ~a" x))

(nsuppstring
(format nil "Suppose not [~a]" x)))

(branch (with-labels (case x) (("Suppose")("Suppose not")))
((comment suppstring) (comment nsuppstring))))

"For doing a simple case split and tracking the cases"
"First supposing ~a true and then supposing it false")

Fig. 1. De�nition of a rule with a parameter and a format-string that refers to it.

CASE. The strategy expression body of suppose uses the strategicals LET, WITH-LABELS, and BRANCH. With
LET, it incorporates Lisp code that computes two comment strings. Using WITH-LABELS, it applies the labels
from the �rst list ("Suppose") to new formulae in the �rst new subgoal, and the labels from the second
list ("Suppose not") to new formulae in the second new subgoal. Since each of the �rst and second new
subgoals have just one new formula, and these new formulae represent, respectively, the meanings of x and
(NOT x), they are labeled appropriately. The second argument of BRANCH is a list of two commands, which
will be applied respectively to the new subgoals. Each of these commands adds its argument as a comment in
the subgoal to which it is applied; this comment will appear above the sequent when the subgoal is displayed.
Each comment will also be recorded in the saved proof at the beginning of the new proof branch starting at
its associated proof goal. The use of labels and comments will be discussed further in Section 3.

4 Though we use a mixture of upper and lower case versions of names in this tutorial, it is safest to use only lower
case in actual strategy �les; see the PVS release notes at http://pvs.csl.sri.com.
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2.3 Adding new rules and strategies to PVS.

Once you have de�ned one or more new rules using defstep, defstrat, or defhelper, you can make your
new rule(s) available in PVS by saving the de�nition(s) in a �le named pvs-strategies and putting it
in the PVS context where you wish to use the new rules. The �le pvs-strategies does not need to be a
physical �le, it can be a link to a �le containing your de�nitions. This way, you can keep a set of de�nitions
consistent across several contexts.

The �le pvs-strategies is loaded when the �rst proof in a session is being started, or when a new
proof is being started after the content of pvs-strategies has been changed. Because pvs-strategies is
loaded into Lisp, it can contain arbitrary Lisp code|not only rule de�nitions, but function de�nitions, global
variable initializations, load commands, etc. One use of a load command (that is in fact employed by TAME)
is to load a set of strategies speci�c to one context that can be generated from some theory in that context.
Further, if common strat is a �le containing a set of strategies that you use in all your developments, you
can load those strategies by putting the line

(load "<PATH>/common strat")

in the �le pvs-strategies, where <PATH> is the path where the �le common strat is found. Section 3
describes some possible uses of functions and global variables.

For testing purposes, one can introduce strategy de�nitions directly from the command line:

(LISP (DEFSTEP strat-name ...))

To rede�ne one later, recall the previous command input using M-s or M-r, then edit the de�nition and
resubmit it. This technique allows for quick tests or explorations of small strategies.

2.4 Creating a strategy package.

If a set of de�nitions is general enough to be used in several developments or to be used by other PVS
users, you may want to pack them as a prelude library extension. The basic functionality of prelude library
extensions has been available in older versions of PVS. However, it became fully operational and simple
to use in PVS 3.1. A prelude library extension is a set of PVS theories, strategies, and Lisp code that are
available to the user as if they were part of the PVS prelude context. As the developer of a prelude library
extension, make a directory MyPackage and put the following �les in it:

{ Files *.pvs containing PVS theories that your development requires. These theories become part of the
PVS prelude theories; therefore, be careful not to introduce inconsistencies.

{ A �le my-strat containing the new strategies.
{ A �le pvs-lib.lisp containing

(in-package :pvs)

;; If your development requires other prelude libraries, then

;; uncomment the following line and modify it as appropriate.

;; (load-prelude-library "OtherPackage")

(libload "my-strat")

{ A �le pvs-lib.el containing Emacs Lisp code that is part of your development.

Once you have put all these �les together, instruct the users of your prelude extension to

1. Set the variable PVS LIBRARY PATH to point to <PATH>, where

<PATH>/MyPackage

is the actual location of your package.
2. Invoke the Emacs command M-x load-prelude-library MyPackage the �rst time MyPackage is going

to be used in a context. Next time that PVS is restarted in the same context, the prelude extension will
be automatically reloaded in the environment.
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3 Some useful techniques for strategy writing

This section describes a set of techniques that can be used by a strategy developer to create sophisticated
PVS strategies. These techniques include:

1. Incorporating backtracking with TRY.
2. Controlling standard PVS steps with appropriate arguments.
3. Observing the proof state.
4. Probing the CLOS structure of the proof state.
5. De�ning helper functions in Lisp.
6. Carefully using global variables.
7. Computing a command in Lisp, and then invoking it.
8. Using auxiliary lemmas for rewriting and forward chaining.
9. Using labels and comments.
10. Using functions from PVS.
11. Applying wrappers.
12. Naming subexpressions of complex expressions.
13. Using templates.
14. Comparing proof step de�nitions using PVS's multiple proof feature.

The TAME [1] strategies and the strategy packages Manip [5] and Field [6] all employ many or all of these
techniques. Below, we illustrate how each individual technique can be used to advantage.

3.1 Using TRY for backtracking.

Backtracking is a powerful technique for automatic proof search. It enables the restoring of an original proof
state after an unsuccessful proof attempt. In PVS, backtracking is achieved by a careful crafting of TRY,
FAIL, and atomic proof rules.

The TRY command in PVS combines a conditional and a backtracking control structure. As a conditional
control structure, TRY performs an action based on the progress made by a proof command on the current
proof state. For instance, the strategy expression

(TRY (THEN (LIFT-IF) (PROP) (ASSERT))

(COMMENT "Progressing ...")

(SKIP))

applies the proof command (THEN (LIFT-IF) (PROP) (ASSERT)). If it does something, i.e., it modi�es
the current proof state, the comment "Progressing ..." is added to the new proof state. Otherwise, the
strategy expression performs the proof command (SKIP) and does nothing else.

On the other hand, the third argument of TRY is a backtracking alternative to failures signaled in its �rst
argument. Failures in TRY's second and third arguments are propagated out of the command. The following
semantics, based on an informal set of rules provided by N. Shankar, exposes some technicalities of the
behavior of TRY.

We assume that any proof command evaluates to one of the following states:

{ skip: If the proof states remains unchanged.
{ failure : If a failure is signaled.
{ success: If the current goal is discharged.
{ subgoals : If new subgoals are generated.
{ backtracking : If backtracking is required.

The evaluation of SKIP, FAIL, and TRY is given by the function j:j as follows

{ j(SKIP)j = skip .
{ j(FAIL)j = failure .
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{ j(TRY A B C)j =

8>>>><
>>>>:

jCj if jAj 2 fskip; backtrackingg
jAj if jAj 2 ffailure ; successg
backtracking if jAj = subgoals ; jBj 2 ffailure ; backtrackingg
subgoals if jAj = subgoals ; jBj 2 fskip; subgoalsg
success if jAj = subgoals ; jBj = success

To complete the description of TRY's behavior, it is necessary to consider that

{ The states failure and backtracking do not propagate out of atomic proof rules, i.e., if the strategy
expression of the atomic proof rule S evaluates to either failure or backtracking , then jSj = skip.

{ At the top-level, the state failure forces the theorem prover to exit, while the state backtracking evaluates
to skip.

For instance,

{ j(TRY (SKIP) (ASSERT) (FAIL))j = failure .
{ j(TRY (TRY (FAIL) A B) C D)j = failure .
{ j(TRY (TRY A (FAIL) B) C D)j = jDj, if jAj = subgoals .
{ j(TRY A (TRY B (FAIL) C) D)j = backtracking , if jAj = jBj = subgoals .

The strategy expression

(TRY (TRY (THEN (LIFT-IF) (PROP) (ASSERT)) (FAIL) (SKIP))

step1
step2)

applies the proof command (THEN (LIFT-IF) (PROP) (ASSERT)). If that command discharges the current
goal, then it does nothing else. Otherwise, it backtracks to the original proof state and attempts a new proof
with the command step2. Since FAIL does not propagate out of atomic proof rules, i.e., it evaluates to skip,
the logical behavior of the above strategy expression is equivalent to that of the strategy expression (APPLY

(THEN (LIFT-IF) (PROP) (ASSERT) (FAIL))) when step2 = (SKIP).
The TRY command is not symmetric: failures signaled in its second argument is not handled in the same

way as failures signaled in its third argument. This makes the analysis of failure propagation di�cult and
error prone. In particular, some PVS commands, such as THEN, ELSE, REPEAT, SPREAD, etc., are implemented
with TRY, and their behavior with respect to failure propagation and backtracking is not easy to characterize.
For instance, j(THEN step1 : : : stepn (FAIL))j is

{ failure , if n = 0 or jstepij = skip for 1 � i � n.
{ backtracking , otherwise.

In general, it is a good practice to wrap as atomic proof rules the strategy expressions that can generate
failures.

For the interested reader, the experimental package Practicals, available at http://research.nianet.org/fm-
at-nia/Practicals, provides a redesigned set of strategicals for catching and signaling failures, as well as
additional control structures for programming PVS strategies.

3.2 Controlling standard PVS steps.

When one needs �ner control in a strategy, one sometimes needs to use variants of the standard PVS steps
that do either less or more than the default actions of these steps. For example, the PVS command

(EXPAND name)

does not simply expand the de�nition of name, but performs some simpli�cations as well. This can be
inconvenient; e.g., since one of these simpli�cations can be a (LIFT-IF), it is possible for a quanti�ed
formula involving an IF-THEN-ELSE to become an IF-THEN-ELSE with two quanti�ed formulae as branches,
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complicating a strategy involving skolemization or instantiation. To obtain the e�ect of simply expanding
the de�nition of name, one should instead use the PVS command

(EXPAND name :ASSERT? NONE).

Other example PVS steps that can be made to do less for �ner control are SPLIT and FLATTEN. Using
the optional :depth argument, SPLIT can be prevented from producing more subgoals than one desires. One
application of this technique is in the de�nition of the simple strategy modus-ponens:

(defstep modus-ponens (formnum)

(spread (split formnum :depth 1) ((skip)(skip)))

"Replaces antecedent formulae A and A => B by A and B when

the formula A => B is labeled by formnum"

"Performing Modus Ponens")

Note that while the PVS rule ASSERT can sometimes be used to discharge the hypothesis of an implication,
ASSERT may cause further changes, and it does not discharge a hypothesis that is not a simple expression.
The rule modus-ponens permits one to discharge the hypothesis of an implication, without doing more (or
less).

Because controlling the number of subgoals in a strategy can be important, being able to apply �ne
control to SPLIT is useful. However, one can also apply �ne control to FLATTEN as well. This is done by
replacing it with FLATTEN-DISJUNCT with an appropriate :depth argument.

One case in which the default action of a PVS step may be too limited is in a context where there
is extensive use of CASES expressions. The default of ASSERT and SIMPLIFY is to not simplify inside these
expressions. This choice often results in more e�cient proofs, but experience has shown this may not be true
when proofs involve large, complex, and possibly many-layered CASES expressions. In such a case, one may
wish to use (ASSERT :CASES-REWRITE? T) and (SIMPLIFY :CASES-REWRITE? T) instead.

3.3 Observing the proof state.

The PVS proof state and related data structures are represented as classes in the Common Lisp Object
System (CLOS). In particular, during the execution of any proof in PVS:

{ The current proof state is in the global variable *ps*.

{ The current proof goal is in the global variable *goal*. It can be also accessed as (current-goal *ps*).

{ The list of current sequent formulae, each one an instances of the CLOS class s-formula, can be accessed
as (s-forms (current-goal *ps*)).

A more comprehensive list of PVS global variables and data structures and the information they contain
can be found in [10, 11].

The proof state (and in fact the value of any Lisp expression) can be observed during a proof using the
proof command LISP. Thus, to observe the sequent formulae of the current goal at some point in the proof,
one can issue

(LISP (s-forms (current-goal *ps*))) (5)

at the top-level. When making extensive observations about the proof state, it can become inconvenient to
have to embed all the Lisp expressions to be evaluated in a LISP command. Another inconvenience of this
command is that it interleaves the desired information with repetitions of the current proof goal, making it
di�cult to make a coherent sequence of observations. (This applies only to PVS versions earlier than 3.1.)
An alternative is to send Lisp into a break; this can be done by typing (LISP (BREAK)).

Each s-formula in (s-forms (current-goal *ps*)) corresponds to one of the labeled formulae in the
sequent of the current goal. An example of how a list of sequent formulae appears when displayed is:

(NOT A B C NOT D E) (6)
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where A, B, C, D, and E represent particular PVS formulae. The actual members of the list (6) print out as
NOT A, B, C, NOT D, E. The list (6) represents the sequent:

[-1] A

[-2] D

|------- (7)

[1] B

[2] C

[3] E

(or a variant in which some square brackets are replace by curly braces). In particular, the negative formulae,
in order, correspond to the sequent formulae numbered -1, -2, and so on, while the positive formulae, in
order, correspond to the sequent formulae numbered 1, 2, and so on. In general, the list of antecedent
(negative) formulae and consequent (positive) formulae can be extracted from the proof state as (n-sforms
(current-goal *ps*)) and (p-sforms (current-goal *ps*)), respectively.

Note that formulae in the antecedent, such as A and D in the sequent (7), appear negated in the represen-
tation of the PVS proof state. The following Lisp code retrieves a formula in positive form, i.e., as it appears
to the user in the PVS theorem prover, from the formula number:5

; Get formula from current goal (unnegated if antecedent formula)

; Assumes that fnum is a formula number

(defun get-fnum (fnum)

(let ((index (- (abs fnum) 1))

(goal (current-goal *ps*)))

(if (> fnum 0)

(formula (nth index (p-sforms goal)))

(argument (formula (nth index (n-sforms goal)))))))

To determine that one needs argument and formula to extract the desired part of an s-formula in (p-sforms
goal) and (n-sforms goal), one can use technique 4 described in Section 3.4.

The inverse of the operation get-fnum is to �nd the formula number or numbers corresponding to
formulae with a given property. The PVS Lisp function (gather-fnums s-forms yes-fnums no-fnums

pred), described in [10, 11], returns the list of formula numbers (taken from yes-fnums/no-fnums) of sequent
formulae in s-forms that satisfy pred. For example, given the property

(defun is-forall (sform) (forall-expr? (formula sform)))

the Lisp code:
(gather-fnums (s-form *goals*) '* nil #'is-forall) (8)

retrieves all the formula numbers in the current sequent that are universally quanti�ed.

3.4 Using CLOS probes.

Most values manipulated by PVS proof steps are CLOS objects. For instance, *ps* is a CLOS object which
has a component current-goal; in turn, (current-goal *ps*) is a CLOS object which has a component
(s-forms (current-goal *ps*)). To probe the CLOS structure of an object and its components, one can
use the Lisp functions describe or show. Given an object object, one can probe its CLOS representation in
depth by repeatedly using describe to discover components to be probed further:

(describe object)

(describe (component object))

(describe (component (component object)))

. . .
5 More involved versions of this function that take care of special symbols, labels, and error han-
dling are available in the Manip (http://shemesh.larc.nasa.gov/people/bld/manip.html) and Field
(http://research.nianet.org/�munoz/Field) packages.
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The function describe provides explicit names of the component slots in the representations of objects,
and these names can then be used like function names to retrieve the elements in these slots, which are
themselves objects. The description of object starts with a sentence of the form:

object is an instance of #<STANDARD-CLASS object-class>

This information generally tells you that object-class? is a recognizer for objects of class object-class. An
element x of class object-class can also be recognized by the fact that (typep x object-class) will be true.

When one needs a shortcut to a sequence of CLOS probes, or when one cannot be sure of the sequence
or sequences needed, one can use the function mapobject. The function mapobject provides an analog for
objects of mapcar for lists: it traverses (most of) the object structure, applying a given function to each
component. Thus, to determine whether an s-formula sform contains a universal or existential quanti�er,
one can use the predicate has-quantifier, de�ned as:

(defun has-quantifier (sform)

(let ((has-quant nil))

(mapobject #'(lambda (x) (if has-quant t

(when (or (forall-expr? x)

(exists-expr? x))

(setq has-quant t) t)))

sform)

has-quant))

3.5 De�ning helper functions.

Helper functions from Lisp are useful for writing strategy expressions that involve Lisp code, i.e., those using
either LET or IF. They generally involve CLOS probes into the current proof state; thus, we have already
seen the following examples of potential helper functions in Sections 3.3 and 3.4:

{ get-fnum

{ is-forall

{ has-quantifier

The helper function get-fnum is used in a LET in the strategy add-eq in Figure 12 below in Section 4.1.
Examples of de�nition and use of additional helper functions can be found below in Section 4.2.

One can classify Lisp helper functions into general purpose and special purpose functions. General pur-
pose helper functions include functions such as get-fnum and is-forall, which can be applied, respec-
tively, to any valid formula number (or label) and to any valid s-formula. An example of a special purpose
helper function is the function get sk constructor exprs from Figure 18 in Section 4.2. The function
get sk constructor exprs will cause a Lisp break if it is called incorrectly; it must be called only on s-
formulae of a very limited form. Special purpose helper functions generally use CLOS probes that are either
unusual or grouped in a long series, making them hard to match. Thus, extra care must be taken when these
functions are used: they should either be used in a context where they are known to be valid (as in the
example in Section 4.2), or else a strategy should test the classes of a CLOS structure and its substructures
before applying them.

Alternatively, helper functions can take advantage of Common Lisp's exception handling features to deal
with errors. While the language speci�cation [12] explains these features in full detail, the following idiom
based on the handler-case macro is su�cient for most applications:

(handler-case

<expression>

(error (condition) <alt value/action>))

If the evaluation of <expression> proceeds normally, its value is returned as the value of the handler-case
construct. If the evaluation of <expression> raises any type of Lisp error, it will be caught and the <alt

value/action> will be returned/performed.
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3.6 Using global variables.

As in any type of programming, global variables must be used carefully in PVS. Clearly, two rules should
be followed:

1. Choose variable names not already in use;
2. Never change a prede�ned PVS global variable, such as *ps* or *goal*.

Towards satisfying rule 1, one can easily test whether a variable x is currently in use: either type the command
(LISP x) when the prover is running, or else type x into the *pvs* bu�er when the prover is not running.
For run-time use, the Lisp functions boundp and fboundp are available to test whether a symbol is currently
bound as a variable or a function. Note that if one violates rule 2 by changing *ps*, even if the new value
of *ps* is a valid proof state object, one is creating a nonconservative extension of PVS, and losing PVS's
soundness guarantees.

In general, global variables should be avoided. However, they can be useful as switches. In TAME, for
example, the user can control whether saved proofs will be in verbose form (recording speci�c facts introduced
in the proofs), or in bare-bones, nonverbose form, by invoking the rules (VERBOSE) and (NONVERBOSE). These
rules work simply by setting a speci�c global variable to t or nil.

3.7 Computing the command to be invoked.

When a strategy de�nition has parameters, it can happen that the proof step the strategy is to implement
depends on some information that must be computed from the parameter values.

A typical example is when the strategy de�nition has an &rest parameter. When the strategy (or corre-
sponding de�ned rule) is applied, the &rest parameter is bound to a list of actual parameters. The strategy
will typically need to extract the car and cdr of this list as it proceeds. Because proof rules cannot be
applied directly to car or cdr expressions, commands involving the application of proof rules to the car or
cdr of a list of actual parameters must be �rst computed and then called. Examples where this technique is
used are in the de�nitions of the strategies apply-lemma, else*, and rewrite-one in Figures 7, 8, and 9,
respectively, in Section 4.1. (Note that apply-lemma computes two commands, lemma-step and inst-step,
though actually, only inst-step, which depends on the &rest parameter, needs to be computed.)

Another example in Section 4.1 in which commands are computed is in the strategy add-eq in Figure 12.
Here, two commands case-step and steplist are computed. Because case-step applies CASE to values
computed from its formula-number arguments, it must be computed. Here again, one of the steps, steplist,
need not be computed. However, note that \unnecessary" computation of a step often adds to the readability
of a strategy de�nition, particularly when companion steps must be computed.

3.8 Rewriting and forward chaining with lemmas.

PVS provides a variety of steps for controlling the use of rewrites. An example of a strategy that takes
advantage of PVS's REWRITE rule is rewrite-one in Figure 9 on page 18. The strategy rewrite-one does
rewriting once using its lemma arguments as the rewrite rules.

For automatic or \large step" strategies, it is useful to do auto-rewriting. Auto-rewriting on a set of
lemmas can be initiated by calling AUTO-REWRITE on a list of the lemmas. Similarly, auto-rewriting on a set
of lemmas can be terminated by calling STOP-REWRITE on a list of the lemmas. Rather than explicitly listing
lemmas, it can be convenient to collect a set of rewrites into a theory, and calling AUTO-REWRITE-THEORY

(and STOP-REWRITE-THEORY) on that theory. Any lemmas installed as auto-rewrites will be used as rewrites
whenever DO-REWRITE is called. Since ASSERT and SIMPLIFY call DO-REWRITE, these two PVS strategies
also cause auto-rewrites to be performed. Auto-rewrites must clearly be used carefully, to avoid possible
nontermination of rewriting.

Rewrites in PVS can be conditional rewrites, where a rewrite rule is applied only if its condition simpli�es
to TRUE. Lemmas with conditions (i.e., hypotheses) can also be used for forward chaining, in which the
(possibly parameterized) hypothesis is matched to some formula or formulae in the current sequent. Any
match de�nes an instance of the conclusion, that is then added as an antecedent formula to the current
sequent. The PVS rule FORWARD-CHAIN allows forward chaining on a lemma (or on a formula in the current
sequent). Note that using REPEAT or REPEAT* in combination with FORWARD-CHAIN can lead to nontermination
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if the conclusion of the lemma used for forward chaining matches its hypothesis; therefore, care must also
be taken in using repeated forward chaining. There is currently no FORWARD-CHAIN-THEORY, although one is
expected to be available in the near future [9].

There are many uses for rewriting and forward chaining; for example, TAME uses both auto-rewriting
and forward chaining to automate certain reasoning about the relationships between constructor and accessor
functions in DATATYPEs that is not handled by ASSERT or GRIND.

3.9 Using labels and comments.

A simple use of comments and labels in a strategy has already been illustrated in Figure 1, which shows the
de�nition of the strategy suppose. This strategy uses WITH-LABELS to introduce a set of labels simultaneously,
and the command COMMENT is for introducing comments. There is also a command LABEL for introducing a
single label.

Labels are applied to formulae. Once a formula has a label, it can be referred to by that label. This fact
has many uses in strategies. For example, a labeled formula can be hidden and revealed by calling HIDE

and REVEAL on its label. One use of this device is to prevent expansion of de�nitions in the labeled formula
except when such expansion is desired. Another example use for labels is to coordinate skolemization of one
quanti�ed formula with instantiation of another. It is possible to give a formula multiple labels by using
the optional argument :push? T with either WITH-LABELS or LABEL. This allows all information in original
labels to be retained, while adding new information, so that formulae can, if desired, be included in multiple
categories for multiple purposes. The use of labels can also increase the stability of strategies. For simplicity,
several example strategies in this tutorial use explicit references to formula numbers (see Sections 3.10 and 4).
However, provided one knows the number, ordering, and nature of the new formulae that will be created by
a command, by wrapping that command using WITH-LABELS and an appropriate list of labels, one can avoid
explicit formula number references. On the assumption that the ordering in the set of newly created formula
is less likely to change in new PVS versions than the explicit formula numbers that will be assigned to the
new formulae, user strategies using WITH-LABELS and label references will be less fragile than those using
explicit formula number references. An example of how labels appear in a sequent is shown in Figure 2,
which shows a subgoal from a TAME proof for the invariant lemma lemma 5 of TIP [4, 3].

lemma_5.1 :
;;;Case add_child(addE_action)

{-1,(pre-state-reachable)}
reachable(prestate)

{-2,(inductive-hypothesis)}
length(mq(basic(prestate))(e_theorem)) <= 1

{-3,(general-precondition)}
enabled_general(add_child(addE_action), prestate)

{-4,(specific-precondition)}
enabled_specific(add_child(addE_action), prestate)

{-5,(post-state-reachable)}
reachable(poststate)

|-------
{1,(inductive-conclusion)}

IF NOT (mq(basic(prestate))(addE_action) = null)
THEN length(mq(basic(prestate)) WITH

[(addE_action) :=
cdr(mq(basic(prestate))(addE_action))]
(e_theorem))

ELSE length(mq(basic(prestate)(e_theorem)))
ENDIF
<= 1

Fig. 2. An example TAME sequent illustrating labels.
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In contrast to labels, which attach to formulae, comments attach to subgoals. Note that subgoal in
Figure 2 also contains a comment which identi�es the case to which the subgoal corresponds. Comments also
appear in saved proofs, immediately after the command that introduces them. When a command creates
branches, it is possible to \label" the branches in the saved proof with comments by wrapping the command
creating the branches in a SPREAD or BRANCH construct that then applies multiple calls to COMMENT to the
branches, as illustrated in Figure 1 on page 4. An example saved proof showing how comments can be used to
make saved proofs more understandable is shown in Figure 3, which shows the saved TAME proof of the the
TIP property lemma 5. The subgoal in Figure 2 is the �rst subgoal of the �rst branch of the proof in Figure 3,
so the comment in this subgoal \labels" the �rst branch of the proof. The saved proof in Figure 3 illustrates
the e�ect of suppose, and also shows that comments can be used to capture ephemeral information from
proof goals, such as facts being used in the reasoning.

Inv_5(s:states): bool = (FORALL (e:Edges): length(mq(e,s)) <= 1);
;;; Proof lemma_5-like-hand for formula tip_invariants.lemma_5
(""
(AUTO_INDUCT)
(("1" ;;Case add_child(addE_action)

(APPLY_SPECIFIC_PRECOND)
;;Applying the precondition
;;init(target(addE_action), prestate)
;; & NOT (mq(addE_action, prestate)=null)
(SUPPOSE "e_theorem = addE_action")
(("1" ;;Suppose e_theorem = addE_action

(TRY_SIMP))
("2" ;;Suppose not [e_theorem = addE_action]
(TRY_SIMP))))

("2" ;;Case children_known(childV_action)
(SUPPOSE "source(e_theorem) = childV_action")
(("1" ;;Suppose source(e_theorem) = childV_action

(APPLY_SPECIFIC_PRECOND)
;;Applying the precondition
;;init(childV_action, prestate)
;; &
;; (FORALL (e: Edges):
;; FORALL (f: tov(childV_action)):
;; child(e, prestate) OR child(f, prestate) OR e = f)
(APPLY_INV_LEMMA "2" "e_theorem")
;;Applying the lemma
;;(FORALL (e: Edges): init(source(e), prestate)
;; => mq(e, prestate)=null)
(TRY_SIMP))

("2" ;;Suppose not [source(e_theorem) = childV_action]
(TRY_SIMP))))

("3" ;;Case ack(ackE_action)
(SUPPOSE "e_theorem = ackE_action")
(("1" ;;Suppose e_theorem = ackE_action

(APPLY_SPECIFIC_PRECOND)
;;Applying the precondition
;;NOT (init(target(ackE_action), prestate))
;; & NOT (mq(ackE_action, prestate) = null)
(TRY_SIMP))

("2" ;;Suppose not [e_theorem = ackE_action]
(TRY_SIMP))))))

Fig. 3. A verbose TAME proof illustrating comments in a saved proof.
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3.10 Using Lisp functions from PVS.

As illustrated in Section 3, one can use PVS Lisp functions documented in [10, 11] in writing Lisp code to
be used in strategies.6 These documented functions can be a convenience in writing Lisp code, but one
can generally achieve the same e�ects in one's Lisp code by combining standard Lisp constructs with CLOS
probes. For example, the e�ect of the code in 8 on page 9, which solves the problem of listing all formula
numbers in a goal corresponding to quanti�ed formulae, can also be achieved by the code

(gather-fnums-property `is-forall (current-goal *ps*)) (9)

where gather-fnums-property is de�ned by:

(defun gather-fnums-property (prop goal)

(let ((negfnums

(let ((fnum 0))

(loop for x in (n-sforms goal) do (setq fnum (- fnum 1))

when (funcall prop x) collect fnum)))

(posfnums

(let ((fnum 0))

(loop for x in (p-sforms goal) do (setq fnum (+ fnum 1))

when (funcall prop x) collect fnum))))

(append negfnums posfnums)))

However, there are PVS Lisp functions that are not formally documented that allow one to solve problems
in ways not so easily duplicated.

Consider the following problem. PVS expressions that are parameters to proof commands are input as
strings. In general, these expressions are built from other expressions in the proof state, where they appear
as CLOS structures, and converted to strings with the Lisp function format. In some special cases, we may
want to perform the inverse operation, i.e., to get a CLOS structure from the string representation of a
PVS expression. A simple way to achieve this operation is to bring the PVS expression to the proof state,
for example using a harmless (CASE "expr = expr"), and then observing the CLOS structure of the proof
state as explained in Sections 3.3 and 3.4. The following piece of code implements this technique:

(LET ((casestr (format nil "(~A) = (~A)" expr expr)))

(THEN

(CASE casestr)

(LET ((closexpr (args1 (get-fnum -1))))

(THEN

(DELETE -1)

;; closexpr is the CLOS representation of expr

(... closexpr ...)))))

The code above (which makes use of the documented PVS Lisp function args1) has the side e�ect of
temporarily modifying the proof state. In most cases, the modi�cation has no logical consequences. However,
if expr generates TCCs, these TCCs will appear in the new proof state.

An alternative, cleaner way to get a CLOS structure of a PVS expression is by using the PVS parser and
type-checker functions pc-parse and pc-typecheck directly. These functions are not properly documented
and they must be used with care; otherwise, the PVS prover could get into an unstable state. The func-
tion (pc-parse expr gramtyp) returns a non-type-checked CLOS structure of the expression expr. The
parameter gramtyp is a grammar nonterminal, in most cases with the same name as the CLOS type of the
structure to be parsed. For instance,

(pc-parse "(# x:=1, b:=true #)" 'expr)

6 An API document that covers all the Lisp calls needed for strategies and integration with other tools is being
written at SRI [7].
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returns the CLOS structure corresponding to the PVS record (# x:=1, b:= true #). On the other hand,

(pc-parse "[# x:int, b:bool #]" 'type-expr)

returns the CLOS structure corresponding to the PVS type record [# x:int, b:bool #]. CLOS structures
should not be used in a proof state unless they are appropriately type-checked. The function (pc-typecheck

closexpr) adds PVS type information to the CLOS structure closexpr. Usually, a call to pc-parse is
followed by a call to pc-typecheck.

An example where converting a string to a CLOS structure in this fashion is useful is in de�ning a
strategy whose behavior depends on the type of one or more of its arguments. Provided the string x names
a valid expression that is type correct in the current proof goal, the value of

(type (pc-typecheck (pc-parse x 'expr))) (10)

will be the (CLOS representation of the) type of that expression. (Note that type is a CLOS probe|i.e.,
the name of a slot or method|rather than a function from PVS.) The string

(princ-to-string (type (pc-typecheck (pc-parse x 'expr))))

can then be compared to any speci�c type name represented as a string, or, more safely, the (not yet
documented) PVS Lisp function tc-eq can be used to compare the type (10) with another (analogously
computed) type.

3.11 Applying wrappers.

Wrappers are strategicals that prevent their strategy arguments from causing unintended e�ects. We have
already seen one example use for wrapping: wrapping a command that may lead to failure in (APPLY ...)

so that any failure caused will be local (undoing the proof only to the subgoal where the command was
applied).

Another instance in which one may wish to use a wrapper is when a strategy has potential side e�ects,
for example through the use of auto-rewrites or global variables, and one wishes to be sure no permanent
side e�ects result from execution of the strategy. Even a strategy that ultimately follows every auto-rewrite
command with an appropriate corresponding stop-rewrite command can leave \dangling rewrites" active if
it produces multiple branches and proves the last branch before it reaches a needed stop-rewrite command.
In such a case one can wrap the strategy, together with a \cleanup step" that removes any potential side
e�ects, in the strategical unwind protect de�ned in Figure 4. To protect against auto-rewrites remaining

(defstep unwind-protect (main-step cleanup-step)

(spread (case "id(true)")

((then (delete -1) main-step)

(then cleanup-step (expand "id" 1))))

"Invoke MAIN-STEP followed by CLEANUP-STEP, which is performed

even if MAIN-STEP leads to a proof of the current goal."

"Invoking proof step with cleanup")

Fig. 4. An example \safety wrapper" strategical.

unintentionally active, the cleanup-step argument to unwind-protect can be a strategy that performs the
needed sequence of stop-rewrite commands.

3.12 Naming a subexpression.

Field axioms, such as associativity, commutativity, distributivity, etc., are known to the PVS decisions
procedures. For instance, the sequent
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|-------

f1g x * x >= 0

is automatically discharged by the proof command (GRIND). Surprisingly, the sequent

|-------

f1g (x - 1) * (x - 1) >= 0

is not discharged by (GRIND). In this case, GRIND yields the sequent:

|-------

f1g 1 - x + (x * x - x) >= 0

which is not further simpli�ed by the PVS decision procedures.
The reason for this behavior is that the decision procedures always apply �elds axioms, and in partic-

ular the distributive law, before other simpli�cations. Since PVS does not provide an explicit mechanism
to customize these simpli�cations, they can be problematic for writing strategies where proof control is
fundamental.

One way to avoid certain implicit simpli�cations, such as the distributive law, is to wrap a subexpression
in an application of the identity function, e.g., id(x - 1). This renders the expression ineligible for the
distributive law. When this protection is no longer desired, the id function can be expanded to restore the
original expression. For simple cases this technique is often adequate.

For more advanced uses, undesired simpli�cation can be avoided by naming the expression that should not
be simpli�ed. This can be achieved with the commands NAME and REPLACE, or the command NAME-REPLACE.
The commands NAME introduce a new name de�nition to the current sequent. This name is then used by
REPLACE to abbreviate the original expression.

Figure 5 illustrates a strategy that blocks the �rst application of the distributive law in a formula by intro-
ducing a new name. The strategy NODISTR uses helper functions get-fnum, get-newname, get-distr-expr,
and get-distr-plus. The function get-fnum (see Section 3.3) gets the formula in the formula number
fnum. New names are created by the function get-newname, which increments the global variable newname
each time a new name is required. Finally, the functions get-distr-expr and get-distr-plus descend the
formula tree to �nd the �rst expression having the form (x+ y) � z or z � (x+ y). These functions use PVS
functions infix-application? that checks if a formula is an in�x application, name-expr? that checks if
an operator is a name (as opposed to a lambda expression), and args1 and args2 that projects the �rst and
second argument of an application, respectively.

For instance, (NODISTR 1) applied to the sequent

|-------

f1g (x - 1) * (x - 1) >= 0

yields the sequent7

f-1g (x - 1) = v7__

|-------

f1g v7__ * v7__ >= 0

When strategies introduce new names automatically, there is the possibility of conicts with user sup-
plied names. To prevent such clashes, we recommend following a naming convention that yields distinctive
identi�ers. For example, the convention followed by the function get-newname is to create identi�ers with
two trailing underscore characters.

The strategy NODISTR can be used to improve the automation provided by GRIND on the �eld of real
numbers. For example, the simple strategy GRINOD in Figure 6 discharges, among others, the following
sequent

|-------

f1g FORALL (x: real): (x - 1) * (x - 2) * (x - 1) * (x - 2) >= 0

7 The name of the new variable may be di�erent.
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;; Strategy definition

(defstrat NODISTR (fnum)

(LET ((form (get-fnum fnum))

(name (get-newname))

(expr (get-distr-expr form))

(str (when expr (format nil "~A" expr))))

(IF str (NAME-REPLACE name str :hide? nil) (SKIP)))

"Introduces a new name in ~A to block the distributive law")

;; Generating new names

(setq newname 0)

(defun get-newname ()

(progn (setq newname (+ 1 newname))

(format nil "v~A__" newname)))

;; Helper functions

(defun get-distr-expr (form)

(when (and (infix-application? form)

(name-expr? (operator form)))

(let ((op (id (operator form))))

(cond ((member op '(= <= >= < > + - /))

(or (get-distr-expr (args1 form))

(get-distr-expr (args2 form))))

((eq op '*)

(or (get-distr-plus (args1 form))

(get-distr-plus (args2 form))))

(t nil)))))

(defun get-distr-plus (form)

(when (and (infix-application? form)

(name-expr? (operator form)))

(let ((op (id (operator form))))

(cond ((member op '(+ -)) form)

((member op '(* /))

(or (get-distr-expr (args1 form))

(get-distr-expr (args2 form))))

(t nil)))))

Fig. 5. Naming a subexpression to block the distributive law

(defstrat GRINOD (fnum)

(THEN (SKOSIMP fnum)

(REPEAT (NODISTR fnum))

(GRIND :theories "real_props"))

"Blocks the distributive law in ~A before applying GRIND")

Fig. 6. Combining NODISTR and GRIND
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3.13 Using templates.

The use of templates is an indirect technique that can be used in strategy development. For example, when
one is reasoning in a special domain, one may wish to assume some degree of uniformity either in the objects
about which one is reasoning or in the formulations of properties of these objects (or both). Templates allow
one to enforce a standard naming scheme for objects and their types or a standard scheme for expressing
properties. As a result, strategies based on templates can be based on a certain amount of de�nite information
that allows them to make more reasoning automatic, and thus to achieve larger size proof steps.

Templates for both speci�cations and lemmas are used to advantage by TAME.

3.14 Using PVS's multiple proof feature.

For proof steps that do a signi�cant amount of automatic reasoning, and which therefore can take a long
time to execute, e�ciency is an important design goal. Once one has designed a strategy that achieves an
intended purpose, one can compare the strategy for e�ciency against alternate versions by saving proofs
that use the di�erent versions. The saved proofs include run time information that can be used for e�ciency
comparison.

Comparisons for e�ciency should be done over several examples, as there are often tradeo�s in the choice
between two near-optimal versions of a strategy. Note that the PVS command TIME, which is similar to
APPLY in that it turns a strategy into an atomic rule, has the additional e�ect of giving timing information
for any branches created by the strategy on which the strategy does not terminate. Thus, TIME provides an
additional resource in studies of e�ciency: it can be used for strategy e�ciency comparisons between the
cases in the branches a strategy generates.

4 Examples of strategy design

In this section, we provide several examples to further illustrate the kinds of reasoning steps that can be
supported with PVS strategies, and to provide new PVS strategy developers with some useful ideas that
they may wish to recycle in their own strategies.

4.1 Some small-step strategy examples

The example strategies in this section are geared towards carrying out tasks during interactive proving, and
can be viewed as providing slightly more powerful versions of existing prover rules. Included are examples
of:

{ capturing a commonly used pattern of steps within a single step,
{ using TRY together with recursion to de�ne a step that iterates a command over the list of arguments to
the step,

{ forking a \proof obligation" proof to simplify introducing a fact (as a conjecture) on the current proof
branch, and

{ creating a new arithmetic reasoning step that is not supported by any standard PVS proof step.

Several of these examples also illustrate techniques from Section 3, including computing and then executing
a command, use of CLOS probes into the proof state, use of Lisp helper functions, and use of PVS functions.

Figure 7 shows a modest strategy apply-lemma that invokes a lemma after accepting a list of expressions
for instantiating the variables. The strategy expands into a prover command of the form:

(THEN (LEMMA name) (INST -1 expr-1 ... expr-n))

Note that the bindings of the LET construct in apply-lemma could have been written using Lisp's backquote
feature:

(let ((lemma-step `(lemma ,lemma))

(inst-step `(inst -1 ,@exprs)))

(then lemma-step inst-step))
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(defstep apply-lemma (lemma &rest exprs)

(let ((lemma-step (list 'lemma lemma))

(inst-step (cons 'inst (cons -1 exprs))))

(then lemma-step inst-step))

"Apply a lemma with explicit variable instantiations.

Lemma variables appear in alphabetical order when introduced

by the LEMMA rule. That order needs to be observed when

entering EXPRS."

"~%Invoking lemma ~A on given expressions")

Fig. 7. Applying a lemma and instantiating its variables.

(defstep else* (&rest steps)

(if (null steps)

(skip)

(let ((try-step `(try ,(car steps)

(skip)

(else*$ ,@(cdr steps)))))

try-step))

"Try STEPS in sequence until the first one succeeds."

"~%Trying steps in sequence")

Fig. 8. Generalization of the prover's ELSE strategical.

In many cases this type of notation simpli�es the coding e�ort and improves readability. We will make use
of it in the remaining examples.

Figure 8 illustrates a basic strategy pattern for trying a series of actions until one succeeds. When the
�rst step is encountered that has an e�ect on the proof state, the strategy terminates without attempting any
of the remaining steps. ELSE* can be thought of as a generalization of the prover's built-in ELSE strategical.
It is likely to be useful as a building block for higher level strategies.

The TRY strategical together with recursive invocation is employed to achieve the e�ect of conditional
iteration. For each element of argument STEPS, if trying the step has no e�ect, ELSE* is invoked again on
the remaining steps. TRY is applied to achieve the following general scheme:

(TRY current-step (SKIP) recursive-invocation)

Note the use of the strategy form (ELSE*$) rather than the rule form (ELSE*) in the recursive invocation.
This is a convention often followed in PVS strategies. It ensures that when the top-level command is invoked
as a nonatomic strategy, all subordinate strategies will be as well, resulting in a full expansion into prede�ned
rules.

(defstep rewrite-one (fnums &rest lemmas)

(if (null lemmas)

(skip)

(let ((try-step

`(try (rewrite ,(car lemmas) ,fnums)

(skip)

(rewrite-one$ ,fnums ,@(cdr lemmas)))))

try-step))

"Try rewriting LEMMAS in sequence within FNUMS until the

first one succeeds."

"~%Trying lemma rewrites in sequence")

Fig. 9. Using the pattern for ELSE* in a more concrete setting.



20 Myla Archer et al.

Figure 9 demonstrates how the pattern of ELSE* can be applied to a more concrete objective. Given a
list of lemma names, REWRITE-ONE tries to rewrite with each lemma in turn until one is successful. It also
provides an argument FNUMS to control which part of the sequent should be subject to rewriting. It follows
the same recursive pattern presented in Figure 8. (See Section 3 for more on the use of term rewriting in
PVS.)

(defstep claim-cond (cond)

(let ((case-step (list 'case cond))

(steplist

(list '(skip)

'(try (then (grind) (fail))

(skip)

(skip-msg "Claim justification not proved"

t)))))

(spread case-step steplist))

"Try claiming a condition holds. A proof of the justification

step is attempted using (GRIND)."

"~%Claiming the condition ~A holds")

Fig. 10. Claiming a condition and trying to prove its justi�cation.

Figure 10 illustrates a di�erent use for the TRY strategical. In CLAIM-COND, we wish to accept a PVS
expression COND as a condition that holds in the current goal and introduce it as a new antecedent formula.
We would also like to automatically prove that the condition holds.

To carry out this task, we use CASE to introduce the supposition, then apply GRIND on the second branch
generated by CASE to prove that COND holds. If GRIND fails to completely prove the justi�cation, we undo
the partial proof and leave it to the user to determine how to proceed. This behavior is obtained using the
following scheme on the second branch generated by CASE:

(TRY (THEN (GRIND) (FAIL)) (SKIP) (SKIP-MSG message t))

Backtracking via FAIL is performed if the subgoal is not completely proved. In this case the SKIP-MSG rule
is invoked to display a message to the user that the justi�cation proof did not succeed.

To direct the branching of the proof into subgoals, the SPREAD strategical is used. The �rst argument to
SPREAD is a step that causes branching, which is CASE in this instance. The second argument is a list of steps
for the follow-up actions to be performed for each subgoal. The second subgoal represents the justi�cation
proof for the claim, where the TRY construct is applied.

(defstep equate-terms (lhs rhs)

(let ((case-eq (list 'case

(format nil "(~A) = (~A)" lhs rhs)))

(steplist

(list '(replace -1 :hide? t)

'(try (then (grind) (fail))

(skip)

(skip-msg "Equate justification not proved"

t)))))

(spread case-eq steplist))

"Try equating two expressions and replacing the LHS by the RHS.

A proof of the justification step is attempted using (GRIND)."

"~%Equating two expressions and replacing")

Fig. 11. Claiming two terms are equal and carrying out replacement.
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Figure 11 follows the same pattern as found in Figure 10. EQUATE-TERMS accepts two PVS expressions
that are claimed to be equal, then substitutes one for the other. A new antecedent equality LHS = RHS will
be added as a claim. REPLACE is applied to substitute RHS for LHS. Then a justi�cation proof to establish the
equality is carried out in the same manner as CLAIM-COND.

Forming the CASE command requires some string manipulation, which is implemented using Lisp's FORMAT
function. This is an example of a common operation in strategy writing. LET bindings are introduced to allow
Lisp code to compute prover command invocations having whatever arguments are necessary.

(defstep add-eq (fnum1 fnum2)

(let ((formula1 (get-fnum fnum1))

(formula2 (get-fnum fnum2))

(left-sum (format nil "~A + ~A"

(args1 formula1) (args1 formula2)))

(right-sum (format nil "~A + ~A"

(args2 formula1) (args2 formula2)))

(case-step `(case ,(format nil "~A = ~A"

left-sum right-sum)))

(steplist '((skip) (then (assert) (assert)))))

(spread case-step steplist))

"Given two antecedent equalities a = b and c = d, introduce

a new formula relating their sums, a + c = b + d."

"~%Adding terms from ~A and ~A to derive a new equality")

Fig. 12. Adding two antecedent equalities to generate a third.

Figure 12 illustrates the extraction of expressions from CLOS objects within the current proof state.
ADD-EQ accepts two formula numbers for antecedent equalities involving numeric values. It then introduces
a new antecedent equality that sums the two equations, i.e., given equations a = b and c = d, it forms
a + c = b + d. The justi�cation proof consists of two applications of ASSERT, which should be su�cient to
prove the subgoal.

To extract terms from the proof state, the formula objects are �rst retrieved using the Lisp function
GET-FNUM described earlier. Assuming the formulae are equalities, their left hand and right hand sides can
be accessed using the PVS functions ARGS1 and ARGS2. When supplied as values to the FORMAT function,
Lisp renders their textual representations as PVS expressions. This allows ordinary string manipulation to
be used to construct new PVS expressions from fragments of the current sequent.

Having formed the new antecedent equality as a text string, an application of the CASE rule is used
to achieve the desired e�ect. In a more realistic strategy development e�ort, error checking code would
be inserted at various places to check for invalid inputs. Strategy writers can decide how important such
checking is for the intended purpose of their strategies.

4.2 Developing high level strategies: an example

Strategies geared to high level proof automation, either of full proofs or of proof steps at a high conceptual
level, almost invariably require use of several of the techniques described in Section 3. To illustrate how some
of the techniques described in Sections 2 and 3 can be applied to developing an automatic strategy for proving
lemmas belonging to a particular class, we will show how the de�ned rule adt unique strat from TAME
was developed.8 Although adt unique strat was developed for TAME, it is useful in any context in which
the DATATYPE construct is used: it allows the user to supply a one-step proof for any lemma that asserts that

8 A little history: development of TAME strategies began with an early version of PVS, in which the PVS step
DECOMPOSE-EQUALITY was not a standard proof rule. With this rule, one can write a much simpler version of
adt unique strat. The example in this section nevertheless serves to illustrate a general approach to creating a
specialized high level strategy.
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if two elements of the same DATATYPE with the same constructor are equal, then the arguments to which the
constructor is applied to obtain these elements must be pairwise equal. Figure 13 shows an example DATATYPE
and its \uniqueness properties" taken from the TAME speci�cation of the basic TESLA multicast stream
authentication protocol [8, 2]. Such a lemma is a corollary of the fact that the elements of any PVS DATATYPE

form a free algebra, that is, a term algebra with no nontrivial equalities between terms. Unfortunately, the
automatic PVS proof procedures such as ASSERT, SIMPLIFY, and GRIND do not automatically \know" this
information. Moreover, as can be seen from the proof of Receive unique in Figure 14, one does not really

actions: DATATYPE
BEGIN

nu(timeof:(fintime?)): nu?
SSend (Si:nat, Sc,Sk1,Sk2:Key, Sm:Message): SSend?
ASend (Ai:nat, Ac:Commit, Ak1,Ak2:Key, Am:Message): ASend?
Receive (RSentPacket:SentPacket): Receive?

END actions

nu_unique: LEMMA FORALL (t1, t2: (fintime?)):
nu(t1) = nu(t2) => t1 = t2;

Send_unique: LEMMA FORALL (i1,i2:nat, c1,c2,k11,k12,k21,k22: Key,
m1,m2:Message):

SSend(i1,c1,k11,k21,m1) = SSend(i2,c2,k12,k22,m2)
=> i1=i2 & c1=c2 & k11=k12 & k21=k22 & m1=m2;

ASend_unique: LEMMA FORALL(i1,i2:nat, c1,c2:Commit,
k11,k12,k21,k22: Key, m1,m2:Message):

ASend(i1,c1,k11,k21,m1) = ASend(i2,c2,k12,k22,m2)
=> i1=i2 & c1=c2 & k11=k12 & k21=k22 & m1=m2;

Receive_unique: LEMMA FORALL (sp1, sp2: SentPacket):
Receive(sp1) = Receive(sp2) => sp1 = sp2;

Fig. 13. Example of a PVS DATATYPE declaration, and its \uniqueness lemmas".

want to make an excursion in a PVS proof to establish this property.

The �rst step in developing adt unique strat is to prove several uniqueness lemmas in PVS and look for
patterns. Figure 14 shows the pattern to follow in establishing a uniqueness lemma for a constructor with one

(""
(SKOLEM!)
(FLATTEN)
(CASE "sp1!1 = RSentPacket(Receive(sp1!1))")
(("1" (CASE "sp2!1 = RSentPacket(Receive(sp2!1))")

(("1"
(APPLY (THEN (REPLACE -1 +) (REPLACE -2 +) (HIDE -1 -2)))
(REPLACE -1)
(PROPAX))

("2" (ASSERT))))
("2" (ASSERT))))

Fig. 14. Proof of a uniqueness lemma for a DATATYPE constructor with one parameter.

parameter: One can see that, after skolemizing and attening the formula in the lemma, one does two case
splits, each based on an equality of an individual skolem constant to an application of the single datatype
accessor function RSentPacket for Receive actions to an application of the Receive constructor to the same



Title Suppressed Due to Excessive Length 23

(""

(SKOLEM 1

("i_1" "i_2" "c_1" "c_2" "k1_1" "k1_2" "k2_1" "k2_2" "m_1" "m_2"))

(FLATTEN)

(SPLIT)

(("1" (CASE "i_1 = Si(SSend(i_1,c_1,k1_1,k2_1,m_1))")

(("1" (CASE "i_2 = Si(SSend(i_2,c_2,k1_2,k2_2,m_2))")

(("1"

(APPLY (THEN (REPLACE -1 +) (REPLACE -2 +) (HIDE -1 -2)))

(REPLACE -1)

(PROPAX))

("2" (ASSERT))))

("2" (ASSERT))))

("2" (CASE "c_1 = Sc(SSend(i_1,c_1,k1_1,k2_1,m_1))")

(("1" (CASE "c_2 = Sc(SSend(i_2,c_2,k1_2,k2_2,m_2))")

(("1"

(APPLY (THEN (REPLACE -1 +) (REPLACE -2 +) (HIDE -1 -2)))

(REPLACE -1)

(PROPAX))

("2" (ASSERT))))

("2" (ASSERT))))

("3" (CASE "k1_1 = Sk1(SSend(i_1,c_1,k1_1,k2_1,m_1))")

(("1" (CASE "k1_2 = Sk1(SSend(i_2,c_2,k1_2,k2_2,m_2))")

(("1"

(APPLY (THEN (REPLACE -1 +) (REPLACE -2 +) (HIDE -1 -2)))

(REPLACE -1)

(PROPAX))

("2" (ASSERT))))

("2" (ASSERT))))

("4" (CASE "k2_1 = Sk2(SSend(i_1,c_1,k1_1,k2_1,m_1))")

(("1" (CASE "k2_2 = Sk2(SSend(i_2,c_2,k1_2,k2_2,m_2))")

(("1"

(APPLY (THEN (REPLACE -1 +) (REPLACE -2 +) (HIDE -1 -2)))

(REPLACE -1)

(PROPAX))

("2" (ASSERT))))

("2" (ASSERT))))

("5" (CASE "m_1 = Sm(SSend(i_1, c_1,k1_1,k2_1,m_1))")

(("1" (CASE "m_2 = Sm(SSend(i_2,c_2,k1_2,k2_2,m_2))")

(("1"

(APPLY (THEN (REPLACE -1 +) (REPLACE -2 +) (HIDE -1 -2)))

(REPLACE -1)

(PROPAX))

("2" (ASSERT))))

("2" (ASSERT))))))

Fig. 15. Proof of a uniqueness lemma for a DATATYPE constructor with �ve parameters.

skolem constant. The technique used in this proof can be adapted to handle the case of a constructor with
more arguments. Figure 15 shows a proof of the uniqueness lemma for the constructor SSend:

The proof of this lemma also begins with skolemization and attening, but this is followed by a SPLIT

command. By executing the proof, one can see that the SPLIT splits the proof into subcases, one for each
accessor function of SSend, and therefore, calling (SPLIT) at the third step in the shorter proof would have
no e�ect. In each subcase of the longer proof, the pattern in the shorter proof reappears. Moreover, this
pattern is now more detailed: the two individual skolem constants correspond to the variables retrieved by
the accessor function, and the constructor SSend is applied not just to these skolem constants, but to the
two sets of skolem constants corresponding to the variables in the SSend expressions in the hypothesis of the
lemma.

We now have enough information to design a strategy. We can begin by de�ning a Lisp function that
returns a command that follows the pattern of the subcases. Figure 16 shows the de�nition of such a function:
mk adt unique case, which takes as arguments the accessor function name, the two skolem constant names,
and the two instantiated constructor expressions used in the pattern. We will expect to begin our strategy
as the proof in Figure 15 begins: with a skolemization step, a (FLATTEN), and a (SPLIT). Following the
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(defun mk_adt_unique_case (acc skconst-1 skconst-2
sk-expr-1 sk-expr-2)

(let ((firstcase
(format nil "~a~a~a~a~a~a"
skconst-1 " = " acc "(" sk-expr-1 ")"))

(secondcase
(format nil "~a~a~a~a~a~a"
skconst-2 " = " acc "(" sk-expr-2 ")")))

`(spread (case ,firstcase)
((spread (case ,secondcase)

((then (replace -1 +)
(replace -2 +)
(hide -1 -2)
(replace -1))

(assert)))
(assert)))))

Fig. 16. A Lisp function that computes a command to prove a uniqueness lemma case.

(SPLIT) command, we then plan to use SPREAD to apply an appropriate subcase command to each of the
subgoals.

To apply SPREAD, we we need a list of appropriate subcase commands, so we next de�ne a Lisp function
collect adt unique cases that returns such a list, as follows. From the proof of the lemma SSend unique

in Figure 15, we see that there is a uniqueness case for every accessor function. Moreover, the two instan-
tiated constructor expressions are the same for each uniqueness case, and the two skolem constants in each
uniqueness case appear in these two expressions in the position corresponding to the accessor function. The
function collect adt unique cases, whose de�nition is shown in Figure 17, expects as arguments 1) the
list of accessors for a DATATYPE constructor, 2) a list of skolem constant names for the quanti�ed variables
in the uniqueness lemma for the constructor, which by convention are arranged in the lemma formulation
so that the �rst two correspond to the �rst accessor, the second two correspond to the second accessor, and
so on, and 3) and 4) two constructor expressions in which the skolem constants are correctly matched with
their corresponding accessor positions.

(defun collect_adt_unique_cases (acclist skconstlist
sk-expr-1 sk-expr-2)

(cond ((null acclist) nil)
(t (cons

(mk_adt_unique_case
(car acclist)
(car skconstlist) (cadr skconstlist)
sk-expr-1 sk-expr-2)

(collect_adt_unique_cases
(cdr acclist) (cddr skconstlist)
sk-expr-1 sk-expr-2)))))

Fig. 17. A Lisp function that computes a list of uniqueness-case commands.

Note that to work correctly when it is applied, collect adt unique casesmust be given the appropriate
arguments. Appropriate arguments can be computed from the formula in the lemma being proved. To
compute the constructor expression instances corresponding the list of skolem constants, we need to know
the names of the skolem constants. A convenient way to do this is to compute special skolem constant names
from the list of bound variables in the lemma. Once the prover is invoked on the lemma, this can be done
by using the Lisp function get binding names (see Figure 18) to probe the proof state for the names of
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(defun get_binding_names (sform)
(mapcar 'id (bindings (formula sform))))

(defun mk_adt_unique_skolem_names (varlis)
(mapcar #'(lambda (varname)

(concatenate 'string (string varname) "_uniq"))
varlis))

(defun get_sk_constructor_exprs (sform)
(exprs (argument (car (exprs (argument (formula sform)))))))

Fig. 18. Three auxiliary functions used in datatype unique strat.

the bound variables, and then applying the Lisp function mk adt unique skolem names to transform this
list into a list of skolem names for the bound variables. The two constructor expressions are found by again
probing the proof state, this time using the function get sk constructor exprs.

Finally, we can de�ne the proof rule adt unique strat, using the defstep macro, as shown in Figure 19.
Note that both adt unique strat and its auxiliary rule adt unique strat continue begin with a probe of
the proof state *ps* to retrieve a value sform representing the current proof goal. The expected proof goal
for adt unique strat corresponds to a uniqueness lemma. The initial call to (ASSERT) in adt unique strat

assures that PVS has �lled in all the �elds in the CLOS structure for this goal, rather than lazily leaving
them unbound. Both proof steps use the technique of �rst computing and then applying a command.

(defstep adt_unique_strat ()
(then
(assert)
(let ((sform (car (s-forms (current-goal *ps*))))

(bind-names (get_binding_names sform))
(uniq-sk-names
(mk_adt_unique_skolem_names bind-names))

(cmd
`(then (skolem 1 ,uniq-sk-names)

(adt_unique_strat_continue ,uniq-sk-names))))
cmd))

"" "")

(defstep adt_unique_strat_continue (sk-name-list)
(let ((sform (car (s-forms (current-goal *ps*))))

(sk-constr-exprs (get_sk_constructor_exprs sform))
(sk-constr-expr-1 (car sk-constr-exprs))
(sk-constr-expr-2 (cadr sk-constr-exprs))
(constr-name (id (operator sk-constr-expr-1)))
(all-constrs

(constructors
(adt (adt-type (operator sk-constr-expr-1))))))

(let ((constr-form (car
(select #'(lambda (x) (eq (id x) constr-name))

all-constrs)))
(accessors (mapcar 'id (acc-decls constr-form)))
(cases

(collect_adt_unique_cases accessors sk-name-list
sk-constr-expr-1
sk-constr-expr-2))

(cmd `(then (flatten) (spread (split) ,cases))))
cmd))
"" "")

Fig. 19. De�ning a new proof rule adt unique strat.
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The e�ect of the part of adt unique strat up to the point where it calls adt unique strat continue is
to skolemize the formula in the lemma using the skolem constants computed by mk adt unique skolem names.
Thus, the value sform computed at the beginning of adt unique strat continue corresponds to the skolem-
ized version of the uniqueness lemma. Moreover, adt unique strat continue is passed the list of skolem
names as an argument so that it need not be recomputed. The step adt unique strat continue proceeds
by �rst computing the arguments it needs to pass to the function collect adt unique cases, and uses the
result of applying this function to the arguments in its computation of a proof command in the form of a
strategy, which it then applies.

5 Discussion

Chapter 5 of the PVS Prover Guide [10, 11] contains much information useful to users who wish to write
their own strategies. This information includes a description of global variables used in the prover, the CLOS
slots in a proof state, methods for retrieving formulae and recognizing the class of an expression, several
useful PVS functions including args1, args2, and gather-fnums, and the macros defstep, defhelper, and
defstrat for de�ning new rules and strategies.

Several things could provide additional help for writing user strategies in PVS. One is simply easily acces-
sible documentation of additional useful PVS functions and macros. Documentation of the helper functions
used in the standard PVS strategies would eliminate duplication of e�ort on the part of PVS users who write
their own strategies.

Currently, the CLOS structure must be probed to determine how to retrieve many details of the infor-
mation on the proof state. Explicit documentation of this structure could allow this \probing" to be done
o�-line.

Strategies that explicitly reference the CLOS structure used for the internal representation of the PVS
proof state must rely on the stability of this internal representation. An extra layer of \retrieval" functions
whose names and e�ects would remain the same despite any changes in the internal representation of the
proof state is one possibility for reducing the sensitivity of user strategies to any changes in the PVS
implementation.

Even without these extra aids, however, it is possible for users to develop sophisticated strategies to serve
their special needs|and to share with others.
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